High Performance Computing using FPGAs

ALE System Integration

NI Technical Conference
November 10, 2009
Based in Long Island, New York – projects nationwide

National Instruments Certified Alliance Partner
 - All developers have National Instruments Certification

Experience:
 - Test Labs, Manufacturers, Mil/Aero, Finance
 - Over 14 Years Test & Automation experience

Design:
 - LabVIEW, LabWindows/CVI, TestStand, Visual Studio
 - FPGA Design using Xilinx Tools, Impulse C, LabVIEW
Terry Stratoudakis, P.E.

- **Education/Certifications**
 - B.S., M.S. in Electrical Engineering, Polytechnic University
 - NI Certified LabVIEW Developer and Certified Prof. Instructor
 - New York State licensed Professional Engineer

- **Experience**
 - Worked at Underwriters Laboratories for six years
 - Former Assistant Adj. Prof. at NYC College of Technology
 - Co-founder and President of ALE System Integration
John Stratoudakis

- Education/Certifications
 - B.S. in Computer Science, Drexel University
 - NI Certified CVI Developer
 - Microsoft Certified Application Developer
- Experience
 - Five years as software developer for financial applications
 - S&P subsidiary Capital IQ, Investment Technology Group
 - LabVIEW FPGA, Visual Basic, .NET, C#, C/C++, Perl
 - Author of several open source software projects
Overview

- Introduction
- Proof of Concept
 - Buffon’s Needle
- Physics and Finance HPC Needs
 - Low Latency, Computational Power
- Case Studies
 - Finance: Option Valuation
 - Physics: Tomography and Matrix Math
 - RF: S-Parameter De-embedding
- Benefits of LabVIEW FPGA for HPC
Introduction

- **Goal**: Use FPGAs in HPC
 - Existing but limited FPGA use in HPC
- **Proof of Concept – Buffon’s Needle**
 - Simple Monte Carlo Method
- **Develop methods for using FPGAs in HPC**
- **Coded in LabVIEW for FPGA**
 - Finance Stock Option application
 - Physics Tomography application
 - S-parameter de-embedding (RF application)
What is HPC?

- Uses powerful computers to solve advanced computation problems
- HPC is successor of Supercomputing
- Hardware Accelerators
 - Custom Hardware for specialized task
- Cluster, Cloud, Grid, SaaS
HPC Implementations

- Grid computing
 - Pros: fast, can be easily programmed
 - Cons: energy and space inefficient, high maintenance costs

- Hardware Accelerators (FPGAs)
 - Pros: fast, energy and space efficient
 - Cons: need to know Hardware Description Language (HDL)
Grid Computing

- Many networked computers working together
- Most existing software cannot run “as is”
- Requires special knowledge of parallel programming APIs and languages
Hardware Accelerators

- Field Programmable Gate Arrays (FPGAs)
- Configured with Hardware Description Language
- *True* parallel execution
Field Programmable Arrays (FPGA)

- Introduced in 1987
- Parallel Execution
- Low Power Usage
- Customizable Integrated Circuit
- Millions of configurable gates on a single chip
- No Operating System
LabVIEW

- Introduced in 1986
- Graphical programming language
- Multiple execution targets
- Runs on Windows, Mac, Linux
- Easy to write parallel programs
- Broad industry use:
 - Military/Aerospace, Research, Industrial, Control, and Embedded Applications
- Taught in most educational institutions
LabVIEW FPGA Module

- Add-on to LabVIEW
- Use LabVIEW skill set to quickly program Xilinx FPGAs
- Converts LabVIEW Block Diagram to HDL
- Higher level of Abstraction
- IP Net has many tools
 - www.ni.com/ipnet
Evolution of Software Abstraction

Abstraction

System complexity

Direct HDL

C to HDL

LabVIEW to HDL
Overview

- **Proof of Concept**
 - Buffon’s Needle

- Physics and Finance HPC Needs
 - Low Latency, Computational Power

- Case Studies
 - Finance: Option Valuation
 - Physics: Tomography and Matrix Math

- Benefits of LabVIEW FPGA for HPC
 - Fast Development
 - Performance Improvements
 - Energy and Space Savings
Buffon’s Needle

- Early Monte Carlo Method for calculating π
- Drop a needle and count how many times it lands on a line (repeat)
- Test case for programming Monte Carlo method on LabVIEW FPGA

$$\pi = \frac{2\ln}{dh}$$
Buffon’s Needle Results

- **Proof of concept a success**
 - Development time – One (casual) day
 - LabVIEW for FPGA ran faster than PC
 - Defined process used in Case Studies

- **Identified challenges**
 - Understand algorithm
 - Fixed point math
 - Parallelization
 - Verification
HPC to LabVIEW FPGA Process

1. Understand algorithm
 a. Look for ability to parallelize
 b. Identify math functions needed
 - e.g. logarithmic, division, multiply, exp, random numbers
 - See NI IPNet (www.ni.com/ipnet)

2. Implement in LabVIEW FPGA
 a. Goal: run in single-cycled timed loop
 b. Pipelining

3. Test with simulated mode

4. Verification with known data
Overview

● Proof of Concept
 – Buffon’s Needle

● **Physics and Finance HPC Needs**
 – Low Latency, Computational Power

● Case Studies
 – Finance: Option Valuation
 – Physics: Tomography and Matrix Math

● Benefits of LabVIEW FPGA for HPC
 – Fast Development
 – Performance Improvements
 – Energy and Space Savings
Physics and Finance HPC Needs

- Goals and motivations are polar opposites
 - **Physics**: advancement of science
 - **Finance**: corporate/personal financial gain

- Technical needs are nearly identical
 - Low Latency
 - Fast trade execution and market data routing
 - Routing of research data to super computing nodes
 - Computational Power
 - Matrix Math, large data sets
 - Monte Carlo Methods, custom algorithms
HPC in Big Physics

- Used to process research data from colliders, synchrotrons, etc.
- Large control systems such as telescopes
- Used by Labs, Research Institutes
- **Examples:**
 - Brookhaven National Labs (BNL)
 - Princeton Plasma Physics Lab (PPPL)
 - National Energy Research Scientific Computing Center (NERSC)
HPC in the Finance Industry

- Used to process market data and value financial instruments
- Used by Exchanges, Investment Banks, Hedge Funds, Mutual Funds
- Recent crashes demonstrate dynamic needs
- Dedicated Conferences & Periodicals
Fat Tails in Finance

- Current models assume events are “well-behaved”
- Fat tail events are rare and not “well-behaved”
 - oil shock
 - large corporate bankruptcy
 - abrupt change in a political situation
- Example:
 - An investment strategy may have an expected return, after one year, that is five times its standard deviation.
 - Assuming a normal distribution, the likelihood of its failure (negative return) is less than one in a million; in practice, it may be higher.
Overview

- Proof of Concept
 - Buffon’s Needle
- Physics and Finance HPC Needs
 - Low Latency, Computational Power

Case Studies
- **Finance:** Option Valuation
- **Physics:** Tomography and Matrix Math

Benefits of LabVIEW FPGA for HPC
- Fast Development
- Performance Improvements
- Energy and Space Savings
Black-Scholes Option Valuation

- Published in 1973
- Basis for Quantitative Finance
 - Equity price modeled as stochastic time series
- Pricing of Options and Corporate Liabilities
- Basis for multi-trillion dollar Options Trading
- Computed with a Monte Carlo Simulation

\[
dS_t = \mu S_t \, dt + \sigma S_t \, dW_t
\]

\[
u = \frac{\partial V}{\partial \sigma}
\]

\[
u(x, \tau) = \frac{1}{\sigma \sqrt{2\pi \tau}} \int_{-\infty}^{\infty} u_0(y) e^{-(x-y)^2/(2\sigma^2 \tau)} \, dy.
\]

\[
\frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} e^{-z^2/2} \, dz
\]

\[
dV = \left(\mu S \frac{\partial V}{\partial S} + \frac{\partial V}{\partial t} + \frac{1}{2} \sigma^2 S^2 \frac{\partial^2 V}{\partial S^2} \right) \, dt + \sigma S \frac{\partial V}{\partial S} \, dW.
\]
European-style* Option Valuation

\[c = S_0 N(d_1) - Ke^{-rT} N(d_2) \]
\[p = Ke^{-rT} N(-d_2) - S_0 N(-d_1) \]
\[d_1 = \frac{\ln(\frac{S_0}{K}) + (r + \frac{\sigma^2}{2}) T}{\sigma \sqrt{T}} \]
\[d_2 = d_1 - \sigma \sqrt{T} \]

*As opposed to American, Asian, Bermudan, Barrier, Exotic, Vanilla-style options
Challenge

- Program Black–Scholes European Option Valuation on:
 - NI Compact-RIO platform (Xilinx FPGA)
 - Running National Instruments LabVIEW 8.6.1
 - Alienware PC
 - Running Microsoft Visual C# .NET 2.0

- Benchmark
 - Development time
 - Execution time
 - Energy Consumption
Visual C# on Dual-Core PC

- Microsoft Windows Vista Ultimate Edition
- High-Performance Gaming Machine
- 3.0 GHz Intel Core 2 Duo E6850
- SATA RAID-0 10,000 RPM Hard Drives
- 4 GB RAM
- .NET 2.0 Runtime
Black Scholes - Visual C#

```csharp
private double _z;
private double _v1;
private double _v2;
private int _phase;
private Random _random;

public GaussianRandom(int seed)
{
    _random = new Random(seed);
    _phase = 0;
}

private int numberOfLoops = 0;

public double GetNextGaussianRandom()
{
    double x;
    if (_phase == 0)
    {
        do
        {
            var U1 = _random.NextDouble();
            var U2 = _random.NextDouble();

            _v1 = 2 * U1 - 1;
            _v2 = 2 * U2 - 1;

            _s = _v1 * _v1 + _v2 * _v2;

            while (_s >= 1 || _s == 0);

            x = _v1 * Math.Sqrt(-2 * Math.Log(_s) / _s);
        } while (_phase == 0);

        _phase = 1 - _phase;
    }
```
Black-Scholes on LabVIEW FPGA
LabVIEW FPGA – Fixed Point Math
LabVIEW FPGA – Pipelining
Results

- Development times were comparable
- LabVIEW on FPGA ran 49X faster
- LabVIEW on FPGA had 33X energy reduction
- Compact-RIO takes up 1/8 the space
Overview

- Background
 - Buffon’s Needle

- Physics and Finance HPC Needs
 - Low Latency, Computational Power

- Case Studies
 - Finance: Option Valuation
 - Physics: Tomography and Matrix Math

- Benefits of LabVIEW FPGA for HPC
 - Fast Development
 - Performance Improvements
 - Energy and Space Savings
Tomography

- Imaging by sections
- Used in various fields
- Computed with Matrix Math
Matrix Math on LabVIEW for FPGA

- One FPGA did not show performance gain
- Designed two FPGA chip solution
 - FPGA 1: Calculate resultant vector
 - FPGA 2: Matrix Math
- Speed gains came from simultaneously multiplying Matrix rows
- Could add more FPGAs for Matrix Math
 - Using FlexRIO
Multi-FPGA Architecture

Parallelized Matrix Multiplication

Vector Result

Check Vector

Result Accuracy

Accuracy Met?
Multi-FPGA Performance Gains

Calculation time (clock cycles) vs. Number of Parallel FPGAs
Overview

- **Proof of Concept**
 - Buffon’s Needle

- **Physics and Finance HPC Needs**
 - Low Latency, Computational Power

- **Case Studies**
 - **Finance**: Option Valuation
 - **Physics**: Tomography and Matrix Math

- **Benefits of LabVIEW FPGA for HPC**
 - Fast Development
 - Performance Improvements
 - Energy and Space Savings
Benefits of LabVIEW FPGA for HPC

- LabVIEW for FPGA is an HPC solution
 - Quick development
 - Energy efficient
 - Fast execution
- Physics & Finance have HPC needs
- LabVIEW for FPGA can be faster than text based programming running on a grid
- Moore’s Law still applies to FPGAs